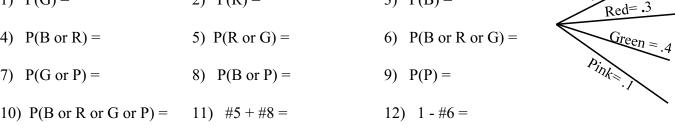
Probability Trees

The probability of landing on a specific color on a spinner is listed on the probability tree. Calculate each probability as a decimal and a percentage.


1)
$$P(G) =$$

2)
$$P(R) =$$

3)
$$P(B) =$$

4)
$$P(B \text{ or } R) =$$

7)
$$P(G \text{ or } P) =$$

Madison flips a coin twice. The probabilities for each flip are listed on the tree. Calculate each probability as a decimal and a percentage.

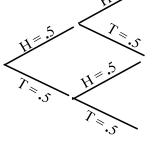
$$H = heads, T = tails$$

15)
$$P(HH \text{ or } HT \text{ or } TH) =$$

16)
$$P(HH) =$$

17)
$$P(TH) =$$

18)
$$P(TT) =$$


19)
$$P(HT) =$$

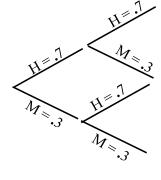
20)
$$P(TH \text{ or } TT) =$$

22)
$$P(HH \text{ or } HT) =$$

23)
$$P(HH \text{ or } HT \text{ or } TH \text{ or } TT) =$$

24)
$$1 - P(HH \text{ or } HT) =$$

Randy is a 70% free throw shooter. He is shooting two free throws. Calculate each probability as a decimal and a percentage.


$$H = hit, M = miss$$

25)
$$P(hits 1^{st} shot) =$$

31)
$$P(MM) =$$

32)
$$P(HH \text{ or } HM)=$$

36)
$$1 - P(HH \text{ or } HT) =$$

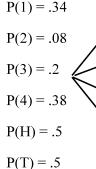
Paul rolls an odd-shaped, 4 sided die and then flips a coin. Calculate the probability of each outcome as a decimal and a percentage.

39)
$$P(1H) =$$

$$+P(1T) =$$
 $+P(2H) =$

$$+ P(1T) =$$

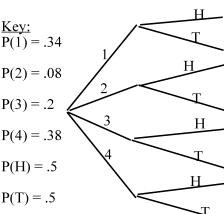
$$+ P(2H) =$$


47) P(2H or 3H)

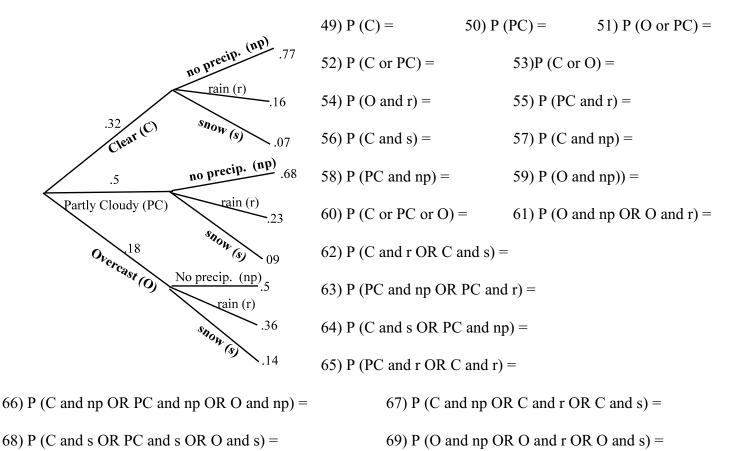
$$+ P(2T) =$$

 $+ P(3H) =$
 $+ P(3T) =$

44) How do 40 and 43 compare? Why


45) 1 - P(1H or 1T)
$$+$$
 P(4H) = $+$ P(4T) =

$$+ P(4T) =$$


46) P(1 or 2 or

$$(3 \text{ or } 4) = 48) 1 - P(2H \text{ or } 3H)$$

The first branch of the probability tree below gives the probability that a day will begin clear, partly cloudy, or overcast in Weather City. The second branch gives the probabilies of different precipitation outcomes.

Give the following probabilities.

70) P (C and np OR C and r OR C and s OR PC and np OR PC and r OR PC and s OR O and np OR O and r OR O and s) =